1. 首页
  2. Python 图像处理

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」

「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」

「Python 图像处理 OpenCV (5):图像的几何变换」

「Python 图像处理 OpenCV (6):图像的阈值处理」

「Python 图像处理 OpenCV (7):图像平滑(滤波)处理」

理论

图像的腐蚀( Erosion )和膨胀( Dilation )是两种基本的形态学运算,主要用来寻找图像中的极大区域和极小区域。

又出来新名词了:形态学。

图像处理中指的形态学,往往表示的是数学形态学。数学形态学( Mathematical morphology ) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。

没看懂没关系,上面那句概念出自「 OpenCV 3 入门编程 」,简单来讲,图像形态学就是改变图像的形状。

图像形态学一些基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等等。

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

其中图像的膨胀和腐蚀是最基础的图像形态学操作,他们主要的功能如下:

  • 消除噪声
  • 分割( isolate )出独立的图像元素,在图像中连接( join )相邻的元素。
  • 寻找图像中的明显的极大值区域或极小值区域
  • 求出图像的梯度

在接着往下看之前,有一点需要注意的是,图像的腐蚀与膨胀,主要针对的是二值图像(黑白图)的,其中进行变化的部分是图像的白色部分(高亮)部分,不是黑色部分。

图像膨胀就是图像中的高亮部分进行膨胀,「领域扩张」,效果图拥有比原图更大的高亮区域。

图像腐蚀就是原图中的高亮部分被腐蚀,「领域被蚕食」,效果图拥有比原图更小的高亮区域。

图像腐蚀

图像腐蚀其中有两个比较关键的输入对象,一个是二值图像,另一个是卷积核。

卷积核是腐蚀中的关键,卷积核的中心点逐个扫描原始图像中的每一个像素点,被扫描到的原始图像中的像素点,只有当卷积核对应的元素值均为 1 时,其值才为 1 ,否则其值修改为 0 。

下面是一个 5 * 5 的卷积核卷积的过程:

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

OpenCV 为图像腐蚀提供的函数是:erode() ,它的原函数如下:

def erode(src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)
  • src:原图像。
  • kernel:卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
  • iterations:迭代次数,默认是迭代一次,表示进行一次腐蚀,如有需要,可进行多次迭代腐蚀。

示例代码如下:

import cv2 as cv
import numpy as np

# 图像读取
source = cv.imread("demo.png")

# 设置卷积核
kernel = np.ones((5, 5),np.uint8)

# 进行图像腐蚀,默认迭代 1 次
dst = cv.erode(source, kernel)

# 图像显示
cv.imshow("source", source)
cv.imshow("dst", dst)

# 等待操作
cv.waitKey(0)
cv.destroyAllWindows()

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

我换一张图片迭代 5 次各位看下腐蚀的效果:

dst = cv.erode(source, kernel, iterations=5)

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

图像膨胀

图像膨胀正好和图像腐蚀相反,卷积核的中心点逐个扫描原始图像中的每一个像素点,被扫描到的原始图像中的像素点,只要有一个值为 1 时则为 1 ,否则为 0 。

图像膨胀卷积核的卷积过程如下:

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

OpenCV 为图像腐蚀提供的函数是:dilate() ,它的原函数如下:

def dilate(src, kernel, dst=None, anchor=None, iterations=None, borderType=None, borderValue=None)
  • src:原图像。
  • kernel:卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。
  • iterations:迭代次数,默认是迭代一次,表示进行一次膨胀,如有需要,可进行多次迭代腐蚀。

示例代码如下:

import cv2 as cv
import numpy as np

# 图像读取
source = cv.imread("demo.png", cv.IMREAD_GRAYSCALE)

# 设置卷积核
kernel = np.ones((5, 5),np.uint8)

# 进行图像膨胀,默认迭代 1 次
dst = cv.dilate(source, kernel)

# 图像显示
cv.imshow("source", source)
cv.imshow("dst", dst)

# 等待操作
cv.waitKey(0)
cv.destroyAllWindows()

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

可以看到,膨胀后的图像比膨胀前的图像整整胖了一圈。

最后还是来个全家福,代码如下:

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
source = cv.imread('demo.png', cv.IMREAD_GRAYSCALE)

# 设置卷积核
kernel = np.ones((5, 5),np.uint8)

# 图像腐蚀
erode_img = cv.erode(source, kernel)

# 图像膨胀
dilate_result = cv.dilate(source, kernel)

# 显示结果
titles = ['Source Img','Erode Img','Dilate Img']
images = [source, erode_img, dilate_result]

# matplotlib 绘图
for i in range(3):
   plt.subplot(1, 3, i+1), plt.imshow(images[i],'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])

plt.show()

Python 图像处理 OpenCV (8):图像腐蚀与图像膨胀

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

转载声明:本博客由极客挖掘机创作,采用 CC BY 3.0 CN 许可协议。可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

QR code