1. 首页
  2. Python 图像处理

Python 图像处理 OpenCV (5):图像的几何变换

点击数:0

Python 图像处理 OpenCV (5):图像的几何变换

前文传送门:

「Python 图像处理 OpenCV (1):入门」

「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」

「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」

「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」

图像缩放

图像缩放只是调整图像的大小,为此, OpenCV 为我们提供了一个函数 cv.resize() ,原函数如下:

resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)

src 表示的是输入图像,而 dsize 代表的是输出图像的大小,如果为 0 ,则:

\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}

dsize 和 fx 、 fy 不能同时为 0 。

fx 、 fy 是沿 x 轴和 y 轴的缩放系数,默认取 0 时,算法如下:

\texttt{fx=(double)dsize.width/src.cols}
\texttt{fy=(double)dsize.height/src.rows}

最后一个参数 interpolation 表示插值方式:

  • INTER_NEAREST – 最近邻插值
  • INTER_LINEAR – 线性插值(默认)
  • INTER_AREA – 区域插值
  • INTER_CUBIC – 三次样条插值
  • INTER_LANCZOS4 – Lanczos插值

看一个简单的示例:

import cv2 as cv

#读取图片
src = cv.imread('maliao.jpg')
print(src.shape)

#图像缩放
result = cv.resize(src, (300, 150))
print(result.shape)

#显示图像
cv.imshow("src", src)
cv.imshow("result", result)

#等待显示
cv.waitKey()
cv.destroyAllWindows()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

需要注意的是,这里的 (300, 150) 设置的是 dsize 的列数为 300 ,行数为 150 。

同理,我们可以通过设定一个比例进行缩放,可以是等比例缩放,也可以是不等比例缩放,下面是等比例缩放的示例:

import cv2 as cv

# 设定比例
scale = 0.5

#读取图片
src = cv.imread('maliao.jpg')
rows, cols = src.shape[:2]

#图像缩放
result = cv.resize(src, ((int(cols * scale), int(rows * scale))))
print(result.shape)

#显示图像
cv.imshow("src", src)
cv.imshow("result", result)

#等待显示
cv.waitKey()
cv.destroyAllWindows()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

除了可通过设定 dszie 对图像进行缩放,我们还可以通过设定 fx 和 fy 对图像进行缩放:

import cv2 as cv

#读取图片
src = cv.imread('maliao.jpg')
print(src.shape)

#图像缩放
result = cv.resize(src, None, fx=0.5, fy=0.5)
print(result.shape)

#显示图像
cv.imshow("src", src)
cv.imshow("result", result)

#等待显示
cv.waitKey()
cv.destroyAllWindows()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

图像平移

图像平移是通过仿射函数 warpAffine() 来实现的,原函数如下:

warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None)

在图像平移中我们会用到前三个参数:

  1. 需要变换的原始图像
  2. 移动矩阵M
  3. 变换的图像大小(如果这个大小不和原始图像大小相同,那么函数会自动通过插值来调整像素间的关系)。

图像的平移是沿着 x 方向移动 tx 距离, y 方向移动 ty 距离,那么需要构造移动矩阵:

M = [\begin{matrix} 1 & 0 & tx \\ 0 & 1 & ty \end{matrix}]

我们通过 Numpy 来产生这个矩阵(必须是float类型的),并将其赋值给仿射函数 warpAffine() ,下面来看个示例:

import cv2 as cv
import numpy as np

#读取图片
src = cv.imread('maliao.jpg')
rows, cols = src.shape[:2]

# 定义移动距离
tx = 50
ty = 100

# 生成 M 矩阵
affine = np.float32([[1, 0, tx], [0, 1, ty]])
dst = cv.warpAffine(src, affine, (cols, rows))

# 显示图像
cv.imshow('src', src)
cv.imshow("dst", dst)

# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

注意: warpAffine 函数的第三个参数是输出图像的大小,我这里设置的大小是原图片的大小,所以结果会有部分遮挡。

图像旋转

图像旋转主要调用 getRotationMatrix2D() 函数和 warpAffine() 函数实现,绕图像的某一个中心点旋转,具体如下:

  • M = cv2.getRotationMatrix2D((cols/2, rows/2), 30, 1)

    参数分别为:旋转中心、旋转度数、scale

  • rotated = cv2.warpAffine(src, M, (cols, rows))

    参数分别为:原始图像、旋转参数、原始图像宽高

图像旋转:设( x0 , y0 )是旋转后的坐标,( x , y )是旋转前的坐标,( m , n )是旋转中心, a 是旋转的角度(顺时针),( left , top )是旋转后图像的左上角坐标,则公式如下:

\begin{bmatrix}x0 & y0 & 1\end{bmatrix} = \begin{bmatrix}x & y & 1\end{bmatrix} \begin{bmatrix}1 & 0 & 0 \\ 0 & -1 & 0 \\ -m & n & 1\end{bmatrix} \begin{bmatrix}\cos a & -\sin a & 0 \\ \sin a & \cos a & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ left & top & 1 \end{bmatrix}

上面这个公式具体的推导过程可以参考这篇文章:https://www.cnblogs.com/xuanyuyt/p/7112876.html

示例如下:

import cv2 as cv

#读取图片
src = cv.imread('maliao.jpg')

# 原图的高、宽
rows, cols = src.shape[:2]

# 绕图像的中心旋转
# 参数:旋转中心 旋转度数 scale
M = cv.getRotationMatrix2D((cols/2, rows/2), 90, 1)
#
dst = cv.warpAffine(src, M, (cols, rows))

# 显示图像
cv.imshow("src", src)
cv.imshow("dst", dst)

# 等待显示
cv.waitKey()
cv.destroyAllWindows()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

图像翻转

第一个图像翻转,这个可是制作表情包的利器。

图像翻转在 OpenCV 中调用函数 flip() 实现,原函数如下:

flip(src, flipCode, dst=None)
  • src:原始图像。
  • flipCode:翻转方向,如果 flipCode 为 0 ,则以 X 轴为对称轴翻转,如果 fliipCode > 0 则以 Y 轴为对称轴翻转,如果 flipCode < 0 则在 X 轴、 Y 轴方向同时翻转。

示例如下:

import cv2 as cv
import matplotlib.pyplot as plt

# 读取图片 由 GBR 转 RGB
img = cv.imread('maliao.jpg')
src = cv.cvtColor(img, cv.COLOR_BGR2RGB)

# 图像翻转
# flipCode 为 0 ,则以 X 轴为对称轴翻转,如果 fliipCode > 0 则以 Y 轴为对称轴翻转,如果 flipCode < 0 则在 X 轴、 Y 轴方向同时翻转。
img1 = cv.flip(src, 0)
img2 = cv.flip(src, 1)
img3 = cv.flip(src, -1)

# plt 显示图形
titles = ['Source', 'Ima1', 'Ima2', 'Ima3']
images = [src, img1, img2, img3]

for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([])
    plt.yticks([])

plt.show()

结果如下:

Python 图像处理 OpenCV (5):图像的几何变换

示例代码

如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。

参考

https://blog.csdn.net/Eastmount/article/details/82454335

https://www.cnblogs.com/korbin/p/5612427.html

http://www.woshicver.com/

转载声明:本博客由极客挖掘机创作,采用 CC BY 3.0 CN 许可协议。可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

QR code